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Abstract-A complete solution to the problem of an external circular crack in a transversely
isotropic body subjected to arbitrary shear loading is described. Explicit expressions are given for
the field of stresses and displacements in a transversely isotropic elastic body weakened by an
external circular crack. The crack faces are subjected to arbitrary concentrated shear loading. All
the results are presented in terms of elementary functions. The problem of interaction between an
arbitrarily located horizontal force and an external circular crack is considered as an example. No
similar result seem to have been previously in the literature. even 111 the case of an isotropic body.

lNTRODUCTIO\l

I consider a transversely isotropic elastic space. characterized by the following stress-strain
relationships

ru ru, /'11·
a, = (A II -2A 66 ):.----' +.4 11 +.4 1 .1
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Here A;k are five elastic constants: u,. u, and II' an: the elastic displacements in the Ox. Oy
and Oz directions, respectively. The equations of equilibrium are

ea, aT.,-) (:L, CT" ?G\ r!\ ?T_\ I'T ca.
0 <L . O. (2)-- + + = + + = + -- + _.- =ox (;y D:: ex rv (Z r.\ cr CZ

It was shown by Fabrikant (1989) that the general solution of eqns (I) and (2) can be
expressed through three potential functions Fl' F, and F, as follows

u = u, +iu, = A(FI +F2 +iF,).
rf l rF,

It· = fill +m,'
( z cz (3)

where all three functions Fk satisfy the equation (Elliott, 194X)
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Here
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(4)

(5)

The values of mk and h are related by expressions (Elliott, 1948)

The other elastic constants used in this paper are:

fork = 1,2

(6)

H = _~~+;'c)A 11_.

2rr(A 11 A " - A ~ 3)

(7)

The field of stresses can be defined through the three potential functions Fk as follows:

Here the following useful combinations of stress components are introduced:

(8)

(9)

The general solution (3) and (8) was used in obtaining the complete solution to the penny
shaped crack problem (Fabrikant. 1(89). To the best of my knowledge, the complete
solution to the problem of an external crack under shear loading has not been reported in
the literature, even in the case of an isotropic body. It is considered in the next section.

FORMULATION OF THE PROBLEM At"O SOLUTION OF THE GOVERNING INTEGRAL
EQUATIO"J

Consider a transversely isotropic elastic space weakened by an external circular crack
of radius a in the plane z = O. Let arbitrary shear r~ be applied to crack faces. Owing to
symmetry. the problem can be reduced to the mixed boundary value problem for an elastic
half-space z ~ 0, subject to the following conditions on the plane z = 0:
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1/ Il.

fora:(l)< J.

for () I) I/.

() :( cP < 2n.

Il :( cP < 2n,

for () jJ /. Il:( (p < 2n. (10)

The general ,olution through three potential fUllctlom F, was given by Fabrikant (1989:
Section 4.4) a,

(\1.- . + ,~Xc).I) .

(11 )

where Xi (.Y.l.:) IS under,tood a, X(Y.l.:d. and:, =: ·il. As we see from eqn (11), the
complete solution is expre,sed through just 0//1' complex harmonic function X(x,y,z). This
function is related to crack surface displacements II by (Fabrikant. 1989: formula 4.4.9)

X(I!. (Ii.: I ( 12)

The governing integro-diflcrentIal equation. \\IHch relates the unknown crack face dis
placements II to the prescribed shear loading r. [, derived by Fabrikant (1989), and is:

(13)

Here points V andY, have the polar cylll1dncal coordinates (r. t/;. 0) and (Po, cPo, 0), respec
tively. R(N. V,,) stands for the distance between the two points, G j and G2 are the elastic
constants deli ned in eqn (7). Ll and A are the operators defined in eqn (5), S is the domain
of the crack. in this particular case it is the exterior of the circle p = a.

Equation (U) wa, solved for the case of a penny-shaped crack in Fabrikant (1989:
Section 2.7) To the hest of my knowledge. no solution of eqn (13) for the case of an
external circular crack has heen published so far. Such a solutIon can be obtained from the
continuity expression \\ hich defines the shear tractions in the crack neck directly in terms
of the prescnbed 10adlJ1g '" Such an cxpreSSIon can be derived from the results in Fabrikant
(1989: Section 2.6). nclmcly.

['''(I)· (/)) =

Here

= P c!l(P- (jJ n)

p"
(15)

The main value of eLJn 1141 hes In 1he fal'l that I1(\V\ the shear stress is known all over the
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plane z = 0, so the solution of eqn (13) can be formally written as (Fabrikant, 1989: Section
2.6)

Here the following notation is introduced:

q = pel<P_poel¢o. R 2 = qq.

(16)

(17)

Substitution of eqn (14) in the first two terms of eqn (16), interchange of the order of
integration, with subsequent computation of the relevant integrals, leads to the following
solution of eqn (13):

where

(18)

J p2 -a\/PG _a2

'1 = ~--------.. -....
a

(19)

The derivation of eqn (18) requires computation of four integrals, namely,

rh ra JPr:7 I r dr dt/J
Jo Jo Ja2_r2 J p2 +r2-2pr~os(rj>-t/J) PG +-;2 ---2-p-o-rc-o-s-(-rj>-0---t/J-)

_ n
2

[ _ ~ -I ~JPr:7J
- R 1 n tan aR ' (20)

= 2n{.!L [~-tan I ('1)J+ '1 [tel¢o te
l
¢ J}

qR 2 R q Po(l-t) - p(1-t)

-?n / 2 _a2 e
2i

¢o fa (l +~) dx (21)
- V' Po 2 j2"""2(1 ~)2 'Po 0 y P -X -<,

·---'----7 e2J¢o fa (1 + ~) dx
= 2n~ PO - a- ~2 ~(1 ~)2 ' (22)

Po 0 V P -x - ..
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r2 (1+r)
= 2n1]---.--.' (23)

a2 (1_ r)2

where q and R are given in eqn (17). rand 1] are defined by eqn (19), and

(24)

The methods developed by Fabrikant (1989) were used in computation of eqns (20)
(23). I note that the integral in eqn (22) is easily computable in terms of elementary
functions. I did not perform this computation because eqn (22), after substitution in (18)
cancels out with the last term in (21).

Now expression (18) gives the exact closed form solution to the governing integro
differential equation (13). The substitution of (18) in (12) allows one to compute the main
potential function X. which. in turn, defines all three functions Fk in eqn (l I); and, finally,
the substitution of Fk in eqns (3) and (8) will give us the complete solution for the field of
displacements and stresses, respectively. Owing to the complexity of the integrals involved,
the procedure is very non-trivial. and it will be described in detail in the next section.

THE COMPLETE SOLlTIO,",

The direct substitution of eqn (18) in (12). Interchange of the order of integration, and
computation of the relevant integrals does not seem possible at first sight. Certain properties
of the integrands in eqn (18) need to be explained. which will prove useful in the future
computation of the integrals involved.

I note the fol1owing property

I introduce the following notation:

1
BI(N.No ) = .' tan

R(l'v. ;'v o )

B
2
(N,N

o
) = (ly- -cr ..... p~-(/(rpoe'('" 'I'o'+a:)

rpoeJiOV '(rp()e"~ "'01_( 2 )2

Here the points Nand N" are characterized by the polar cylindrical coordinates (r, l/J, 0)
and (Po, ¢o, 0), respectively.

I note the following property of symmetry
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HI (N. Nil) = H, (SII' V). H,(N, No) = B2 (No, N).

H,(N. N,,) = H; (s".V) (27)

Let R(/vf. V) denote the distance hetween the points M(p, ¢ . .:) and N(r,i/J, 0).
By using eqns (25) and (26).

(28)

Here S is the domain of the crack. Integration by parts in egn (28) leads to a very important
property

~I' / I ~I -( 1 )I [Hj(.V.VIi)-H.(.V.No)]Ai . .' )dS\ = -I. BdN,No)A ····(·.M M)·· dSN· (29)
•• s \R(.\f.i\) •• \ R ,lV

Two more properties can be ohta111ed hy application of A and A. to hoth sides of egn (29),
namely

Integration of hoth sides in eqns (2':1) and (30) with respect to.: will lead to similar properties
for In [R( M. :V) +:::] integrand. These properties allow one to avoid computation of integrals
111volving H,. which look very formidable. and compute instead the integrals involving
expressions H[ and H2 which are more SImple.

It can he inferred from eqn (II) that it will he useful to introduce the notation:

(31 )

The complete solution. given hy egl1s ( II ). (3) and (8) will depend only on the first and
second derivatives of [. and V Since IIltegrais involving B, do not have to be evaluated
owing to the properties (28) ·(30). all the derivatives of U and V can be expressed through
the two fundamental functions. namely.

r[(M.V,,) = II B[(A.No)ln[R(M,N)+.:]dSN •

~; . "

[.(:\4. Nil) = 1\ H:(N.NII ) In [R(M,N)+.:]dSv.
.. \

Equation (18) can he rewritten in the new notation as

(32)

(33)
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By substituting eqns (33) and (12) 111 (31) and using the properties (28)-(30). the following
results are obtained:

(34)

(, - l(; r,U'vl. VII) r(NII ) dS\"
n 1\ .I1IL,(M,\<1

-t-/\ J'J, I1-,(.\1,\,,)-- ~:' L,IJl,\,,) Jf(ViI)dS, .. }.

In order to find the field of displacements, one need only know the A and z-derivatives of
U and V; the field of stresses will be completely defined by the second A, z and mixed
derivatives, All these derivatives can be expressed 111 elementary functions, as will be shown
in the next section.

The results of previous section can be applied to solving the problem of a tangential
point force loading of an external circular crack. The solution will give all the Green·s
functions related to the case. I consider an inJil1lte transversely isotropic solid weakened in
the plane z = 0 by an external circular crack I' il.

Let two equal and oppositely directed tangential forces of magnitude T = T,+ iT, be
applied to the crack faces at the points (P<. (P", () I I show in some detail computation of
the tangential displacement lI. whicii IS defined b\ the first formula in (3). with the functions
Fk given in (II), From eqns (3). (11). (31) and (qllt can be deduced that only t1L,. t1L>
A2L, and A 2L e need to be computed. Since both r, and L 2 arc harmonic functions of (p.
rjJ, z), computation of t1 can be replaced by computation of ?2.i'z2 The functions Fk

defined by eqn (II) can be rewritten 111 tenm or I and Vas follows

F
4n(!!1 II

F
-In!!!! - I)

/,
IV,

4n
(35)

Here U, and f k are understood as I( J/d ,lI1d f( M,.I. and the point Al, has the coordinates
(p, rjJ, z;,), with Zk = Z ~,. ror k = 1,2,3. From eLjns (3) and (34)(35) it may be concluded
that

(36)

The second z-derivatives of Land L, are computed in formulae (A37) and (A 11) of
Appendix A, the quantitIes of ;\-'L. and ,\'L, arc gl\en in (A34) and (A42), respectively.
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So, utilization of (A37), (A 11), (A34) and (A42) in (36) gives the complete field of tangential
displacements in the whole space weakened by an external crack and subjected to a pair of
tangential forces T applied at the points No of the crack faces. All the remaining quantities
can be computed in a similar manner, with all the necessary derivatives of L 1 and L2

presented in Appendix A. The final results are

(37)

(38)

(39)

(41)

Here Re stands for the real part of the expression to follow, the elastic coefficients are
defined in (6) and (7) and the functions gk are given by (for details see Appendix A)
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(45)

(47)

-tan (48)

7
2

I<p 2 2 I 2 { 1 l a(a
2

- / i )I 'l99(Z) = - ~ pe (Po -a) ---. 1- --;---:; ~- ---_
a3 1- t cr - /II

I {3R6+6z2R6-.::4 (- ') 8
911 (z) = -= ' -tan 11.. - .~ tan

q t/ R~ Ro q-

,(p~_a2)12)

(~-- --

3p6 e21<PO)l
+--~ tan

.i'"
I ( .i' ,.)

(~2=li)1 2/ -tan

, 'I ' j lp e11
'Pq ::' il e"i1

(p' - / i) 2 . ]}x (a - (a" -I") ")+ ---~. -- - + + --- --- - 2 e 1<pI ".1 '") ,,_ ,

Ro+r l~-li R,A qp
(52)
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(53)

6+9r

pC(I-r)
(54)

_, (p~ - a 2
) I C { 311

: r
YI4(::) = -r- ------- tan

(/' ( I _ 1)' C

(
11

2 (a C
__ IT) I 2, -1

tan I )

a( I _ 1) I C /_

(55)

(56)

l ") "" ', , ,::"'- Po e "
(Pii-a-ll- ~(_+ _, .. -)(.tan

,I q .1'-

It should be remembered that the notations ~, (f, R, t. ,I, Ro, j are defined in (15), (17), (19)
and (A29), respectively,

We should also notice the identities

11c a 1IC (a C
_f;)IC (a 2 -/D I2

( I - 1) I C.i' a( I -1) I C S
(58)

and this means that the trigonometric functions which were introduced in various formulae
in different manner. are in fact the same, for example
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tan-I ( llil )-tan 1 (l'!2(a
2

_n)I!2) = tan-1 ( s )-tan- 1(~) (59)
(1_i)1!2 a(1-i)l/2 (a2-m I2 a '

and yet another example:

(60)

Every function 9i depends on the coordinate of the field point (p, cP, z) and the coordinates
(Po, cPo, 0) of the point of application of the force T. We use notation 9;(z) just to emphasize
the fact that one should substitute Zk (k = 1,2,3) instead of z when using formulae (37)
(42). The reader can also notice the absence of 96(Z) from the list above. This was not an
oversight, but rather to preserve in formulae (37)-(42) the form of solution used in Fab
rikant (1989) for a penny-shaped crack, where the equivalent notationf6 was used elsewhere.

The expressions (37)-(42) simplify significantly on the plane z = O. The results are:

u = 0, for 0 ~ P ~ a,

GI[1 -1(11) G~t2(1+t)'1lu=- -tan - -- T
n R R GT a2(1-t)2

G2 [ q -I (11) 11 ( te"P l e1

<P
o )l-+--tan -+- .~ T forp>a,

n qR R ij p(l-t) Po(1-l)

2 {{I _(p~_a2)1/2) (p~_a2)12 ( _ ( s )
w = -HaRe -tan I + tan 1

n q a qs (a 2 _ p2)'/2

( ))
G (

2 2) I /2 [( ( -) (-))-I S 2 a Po - a . a _ I S -I S
- tan - + - - tan - tan -

a G I Po ei<po S3 (a 2-IT) 1/2 a

_~ (1- (a
2

- p2) 1/2)l}T}, for p < a,
S2 a(1-0

2 {[I _(P6-a2)1/2) (p6-a2)1/2 _ (a)
w = - HaRe - tan 1 + tan I -

n q a qs s

(61)

forp > a, (62)

O'j = 0, for p < a,

(63)

0'2 = :2 {(2nA 66 HYIY2+ ylJ[9S (0) T+ ~:9dO)fl

+(2nA 66 HYIi'2- ylJ[911(0)f+ ~:gn<O)Tl}, (64)
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(J, = 0,

L =_~ (p~ - acr C I ~. + Gc e~_eCl<PtC (a
2+ p2 l)'tJ

- rr 2 (aC_ pC)ICLR C G 1 aC(ac _pct)2

= _~ (P6-
a2l c r.L + Gc e21<Po(1 +C) tJ for P < a,

rrC(aC_pC)ICLR C Glp~(l_~)2 '

, = - T6(p-Po)6(¢-1Jo), for p > a.

(65)

(66)

The second and third mode stress intensity factors can be expressed through the de
composition ,In) = "'I + iT,,, which is related to L by a relationship T(n) = T,e- i

</>. Introducing
the complex stress intensity factor

kc+ik, = lim[(a-p)12"e 1</>j.
II --+ a

From (66)

In the case of a distributed loading. the stress intensity factors are given by

k,+ik, = e 1\' 51'crrJ~j (p~-_aJ~_CrC£o,~o)podpod<l)<:

- rr C(2a)1 C l.o a p~-raC-2apocos(1J-rjJo)

Note that eqn (69) is in agreement with (14).
Formulae (37) (57) are the main new results of this paper.

(67)

(68)

(69)

DISCUSSION

The complete solution, obtained in the previous section, is of great value because it
allows one to solve easily many complicated problems which were not even attempted
before. I consider, as an example, interaction between an arbitrarily located horizontal
force Q and an external circular crack of radius a: Let Q = Qx+iQY' where Qx and Qyare
the x and y components of Q. Let the force Q be applied at an arbitrary point M(p, rjJ, z).
We need to find the stress intensity factor at the crack boundary.

The solution can be obtained in an elementary way by using the reciprocal theorem.
We consider two systems in equilibrium. The first one is an elastic space weakened by an
external circular crack, with two equal and oppositely directed unit tangential forces
T = 1+ i applied at the points (Po, rjJo, 0.':) of crack faces. The second system is the same
space, with the crack faces tractions free. and the horizontal force Q = Qx+iQy applied at
the point M(p. rjJ, z). For simplicity of the transformation to follow, we present eqn (37) in
a generalized form
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(70)

Here Dr and D2 are the combined factors of T and t, respectively. The tangential dis
placements at the point M(p, ¢' z) in the x and r directions owing to a couple of unit forces
T, will be, respectively.

(71)

The similar displacements due to a pair of unit forces T\ are

(u,h, = Re [(Dr - D2 )i] = -1m WI - D2 ), (u,) I = 1m [(D I - D2 )i] = Re (Dr - D2 )·

(72)

Denoting the tangential displacement discontinuity in the x direction due to force Qx
as (AJQ,. according to the reciprocal theorem, we have

(73)

The remaining three equations are obtained In a sImilar manner, and they are

(AJQ. = -Q, 1m (D 1 - DJ, (AJ Q = Q\ 1m W r + D,), (A\)Q, = Qy Re (Dr -D 2 )·

(74)

The meaning of the notation in eqns (74) is the same as in eqns (71 )-(72). Summation of
eqn (73) with the first expression of (74) multiplied by i yields

(75)

A similar operation with the second and the third expressions of (74) gives

(76)

Finally, summation of eqns (75) and (76) results in

(77)

A comparison of eqns (70) and (77) shows how the reciprocal theorem can be used in the
case of complex forces and displacements: we can obtain the tangential displacement
discontinuity at the point (Po, ¢o, 0) owing to a tangential force Q applied at the point (p,
¢, z) by using the expression for tangential displacements at the point (p, ¢, z) owing to a
pair of equal and oppositely directed tangential forces T applied at the point (Po, ¢o, O±),
by way of substituting Q instead of T, and by replacing the coefficient of Q by its complex
conjugate. Using this rule, we have from eqn (37)

(78)

The stress intensity factors of the second and third kind can be expressed through the
tangential displacement discontinuity (Fabrikanl. 1989) as
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(79)

The limiting quantities, which need to be computed, are as follows

I (f.)l

Here the following notation is introduced

(80)

(81 )

The overbar everywhere denotes the complex conjugate quantity. Substitution of eqns (80)
and (78) in (79) gives the required stress intensity factors. It would be too cumbersome to
write the final expression explicitly. A significant simplification takes place when z = O. We
can obtain from eqn (61)

~Q = ~l [-R
I

tan I (1)_G ~ 1:(I +.--~lQ
" R Gi a-(l-- 1)-

G, [q+ --tan
IT tjR

The limit can be computed easily

I ('1) IJ ( t e'<P 1eUPl) )l-
R + q p(l-t) - p~(l-1) Q. (82)

and its substitution in eqn (79) yields

(83)



External cIrcular crack 181

(84)

with R~ = p2 +a2
- 2pa cos (cP - cPo). The result (84) corresponds to half of the expression

(68). as it should be. since there is one-sided loading of the crack.
The presented complete solution to the external circular crack problem provides a

powerful basis for solving various difficult problems of interaction of arbitrary located
forces with the crack, interaction between cracks. etc.
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APPENDIX A

Computation of vanous denvallves of L, and L as they are defined 111 eqn (32) are presented here. The
simplest integral to compute is

,'~:'1'''''{j~ II~I '!'III(rpo e:(1JI U)I,I+ a ~ ,r:-a~""ip~-~a2rdrdt/J

= J, J. ---/~;;,(rpllell·-·"'-a'): V +p'-2rpcos(q'J-I/t)+;:2j' 2'

We use the integral representation from Fabnkant (19891

(AI)

Here

I

R(M.SI II" +1" 2rpcos(q'J-i/Jl-:'j

2 J" /.(1'1' x' ,c/! -I/t) dx

= IT 'I"~ 1~'=~)')(g2(x)_r2)]'2'
(A2)

III;. :)1 =
I-I;'

I +- k' - 21; cos ,'J
\ 1;" e'''·. for I; < I. (A3)

/,(1') =,[.... 11'+ (M)

The function 9 IS 1I1verse to 1_. so that g[I,1 1')] = r. I, IS transformed by subSlltut1l1g eqn (A2) in (A I) and expanding
B, in the Fourier series

,~- " • • -- - • [- ,- II", C'., (a' e 110' _-~:)nJ
I, = I'-'j '-..r: --- a-(I~_ p(,-~~ _(.~r-I-I-'-.' 'I I 1211+ I) ---

..ill ,,'" '. ,. I' rp(1

[
2" ilprx'.c/!-i/JJdX]

x ---- ---- ---- rd,.dljJ
IT 1.", [Il"~ - p')(g'( \) - r')J' ,

IX' -/;)(x' -I;)le + 1'-)
--------------- ,h
,"(e-t-I-(x' 1")

(AS)

The abbreviation /, stands for iIO). as It IS defined ,n el.1'1 1\41. and
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e' = a2 '£"-ell¢-¢o).

Po
(A6)

The following rule of interchange of the order of integration was used in eqn (AS)

~,h fX f"IX)J, dr L" dx = I, dx u dr. (A7)

Now computation of I, has been reduced to an elementary single integral. The integrand in eqn (AS) can be
decomposed in simple fractions

(A8)

Substitution of eqn (A8) in (AS) allows one finally to compute

3::'1][ (ll!2(a2_mli2) (1'/2 )]}- .... _- tan I - tan - I ---. (A9)
(1·1)" a(l_I)'/2 (I_i)1!2'

where { is defined in eqn (19).
The next integral to be computed is

(AIO)

Differentiating eqn (AS) with respect to::. we obtall1

/ pi, -a' f 31" [ _ (II '(a' -/D I12) - ( 1'!2 )]= 21[::"----· tan I -tan I ---

a' [(I-ll" a(l_I)';2 (1_1)'1'

+ _1'_ [ala' Ii) I' , - a(l + I) ]}
(l-ll' a' iiI ---{+ ~'-m'l' .

Application of tbe operator J\ to the complex conjugate of eqn (AS) yields

(All)

I, = AJ " '\i Po= JU: -- ----

(I'

a' ,of ~'(x' -li)(x'-dHx'+,;')
I' e 3 I .-----.. . dx

I ,I ~'lx'_,;')2(x2_p')52

+r')dx I \/1'1,_(12 2{( a )[a2
= 1[peuP---~t 1- -

c)-lx--p-)'2\ a' (a'-/D '1 2 p't

+ I [_3a_'_
p=, I -,(1---1)':'

. I' .. ] I
tan 'C I tll~) i

3(a' 1"1) ISz't J[ _I (t
ll2

(a
2 -/D. (/2)---.. -- + ---- tan

(I_I)" (1-1)72 a(l_t)'i2

(AI2)

By applying yet another A-operator to eqn (1\ 12). we have
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-- IS:' I
./,

(x'+r.')dx
---------+
(X'-f:')'(X' _p2)" 1,(/;

2:'(/; +i I(I~ --0') I----,
,')'(1; p'l' '(Ii -I;)!"

(AI3)

The integrals in eqn (AI3) are elementary, we can use the Indefinite Integrals presented in Appendix B for their
evaluation. The final result is

o '. IX+YI- 21'

(a' !C)'C)p'll I)'

15I'~'/j(a' ·-if)" ar [
- -------_.- ----

a(l-1)4 p4(ii- p2I l (a'-I;)" _1"/1

\(0'

1)2(1j

15(a' r'l) 1051 'J[ (I' ,II '10' 1;)' "J1
-----('·1-_-·-.'·1··-));-- + -(I _1~)4" tan '- ) tan ( ,- - --) r

(1 I) '. , a( I - I)" / J'

IntegratIOn with respect to : of eqn (A I) gives

(AI4)

L,(M,No) = It B,(N,No)ln[R(M.N)+~ldS, = 7['- Ii
I(I t 21 [~' - (/ i - a2

)' ']7'
I' -"3(1 '~. I)'

.. ,,[7(1'2 if) ] ,+la/,tP--I;) . -,--,.-----:;--1 +1(1/;
I; (1, I)'

0'1' ,
(

' 0

:) I
1"1 ')\-- +a-
I

. , ,(a') . .+a(p'l- la') sin I,. + 2a' (a' - rr I)
1" I)' ,

II I)' ,)

Ii)' .

11 '

(AI5)

Indefinite integrals from Appendix B were used here. Application of the /\-operator to the complex conjugate of
eqn (All) yields

6+91+ ----.
1"(1-1)

1+1

il-p'
II

1'1 I tA16)

Yet another ~-ditferentiationof eqn (A 11) results In
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t'ffB'(N'NO) __,.,/p~-a'{ 37
12

[ _'( 7
1

•
2

')-- dS, = 2nr---- --- tan .--
iJz' s R(M,N) a' (1-7)52 (1-7)1'

(AI7)

We apply the A-operator to the complex conjugate of egn (A 15), with the result

2(p2-if)] 2[Z3 __ (/;_a2)J'][ 61 J 2 2 I'
--.---, ------. -; ---.,- 1+4+- -2((1,-a )'-z)

p-(l-I) 3Irll-t)- I-I

[
a'-p'l a'] [z (a2_if)(I;~a')I'J[a'-p21

x P'I(I_ I)' - ;'(1--;) + ;; - I; (I; - p' I) (1- I)'

Z2 I J z [3(a' - p2 I) 2a'_ .._-- +-- ---_ ..._- ---- - ---
(I-I)' p'll(1 I)JI' (I--i)2 l(l-I)

5z
2

1. J[. I( I' 2) I(112(a' -1i)li')J}- -- tan --- .-.- - tan .
(1 - I)' (1 I)' 2 a(l - I)' ,

Application of yet another A to egn (A 18) yields

r
'. .. i/_ a2 { 2(1;-a')3.2 ( 61)

A' J B,(N.Nolln[R(M,N)-'-z]dS, = nI2p'e,,,py.-I,-,~- ., ., , 4+/+-
1

-
• s a3 (!2-if) pL(I-IY -(

_ 2(p' -Ii) __ a' -Y'IJ+4[.(!L~J')I'<J[2(a' .p'l) - 2a' - ~J
(1-1)' 1(1-1)'_ p" 1(1--1)' I-I (I-I)'

+4(1; _a')" [i..-I; (~+..2 .... _2!i ~_ + 6(p' -if)J
p' i5-1i I (1-1)') p2 1 (I-I)' p2(1_1)4

(A18)

z [ ala' -fill 'J[ 6z'I+- 1------ ---
p4 a' -Iii (1-1)4

4(a' -P'I)J+ [a' -P'I - ~J
(I-I)' (1-1)' (1-1)'

2a' 5z'I J[ I-- _.._-- --

1(1-1) (I-t)' p4(1_n
a(a'--I;)"! I I)J
--:;---"-:~--,' -,-- +-,--,
p'W -II;) (p-(l-I) I, -I;

z [15(a'-p21) 6a' 35z'I J+ --_.---- ._---_.- -- .__.-
p4[I(I_I)]" .. (I-I)' 1(1 I)" (1-1)4

(AI9)

Formula (A 19) looks too long, and I have not found a way to simplify it. On the other hand, the same result can
be obtained by integration of egn (AI4) with respect to z. Such an integration can be performed by using the
indefinite integrals from Appendix B, and at first glance it is too long and includes various trigonometric functions.
Since egn (A 19) contains only tan -, in the last line, then it may be concluded that the coefficients of all the other
trigonometric functions should be zero. This simple idea led to a relatively short result, namely,

'I'f '. . -- .- 2: :", ,,·;;r-a' {(I; _a')1'2 [ 351A B,(N./~,,)lnlR(M"\-)+LJdS,--nlpe --.- , ---4

•sa' p' 2(1 - I)

2(a 2 - p' t)+ -----._---
I(I-I)'(I'-P'I)
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I~~
, X7/ .'X/' + XI' 'la'i -6+1~ 181' +81')

U- ti I + Ie Ii Ii ) ]-
21) II I)' 1'4 1(1-,,1)'

XT·9,1
,

I 151" I' /) (,,,

I' II I) i"[1\ I iii II II 111 I)"

,,,-
]1 Idll

/' iiI' I;)' /'

.. )11tan
II 'I' ulI I)' . II II
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(A20)

As can he seen, cLJn (,\2\11 I' much shorler thdn (A I'll, and cxccpt f,)r the last line. looks totally different. Direct
numerical computations shlm thar tA 19) and (A20) arc IdentICal. hut since the author is in jail and has no access
to cOlltemporarv computer faCilities. he could not lind a wav to reduce (A 19) to (A20) or to reduce both to a
third expressIOn which might he nell simpler then (A20i. ThiS is left as an exercise for the reader.

It is l)fmterest Il) no Ie Ihat eqn (A201 was ohtamed from (A141 h~ mtegration with respect to c, Ifwe now
dilferentiatc (A2\11 wllh re,pect Il, ,c. we do not get (A 141, we get slHnethmg very different. namely.

S
1),-) " \IU /)-1 1 i 2Iu-' P II

" " " I
iI I 1':(( 1,1 1111 /1 U' I' /)

~.'" r

I
:1/

"

)' ~I<I I' 1)/

21 I I) • I,
I' /11 II' (I' J' I):I'

A' I" 8.1\, \, I

,.I, R(II. \1
dS,

I; (x ,~

1

1'- ,/ II I)'

21, (x ~,

I" ,/ II fI-

II 1:1/ I' I

e(/· <I)

I'll; /, )1/

(/ iF II

)- f'I/-' i) :148.87t 381' + 8t'
I 21r (1 1)4

, ,

" I h . / 181 ,,! I I
/1 1,'/(1 /I

! .':;'u p- /) ~ ...;; ~.

I I I) II /i

1,1 II /)
105: I II tall

11 I)'

/
( ,
'II II"

(
'II '(a' -li)1 ')J}tan I . ,

a(1-t)I' ..
(A21)

Again, numenc"lc'l)ll1pUI;IIIl'lh ,11')\\ Illdl cljn (/\21) IS Idc'lIllCal t,) (:\14), hut no way was found to reduce one
to the other or 1(\ reduce bolh t,)" Ihm! expre,slon which w"uld hc' Simpler than both of them, Again the exercise
is left to the reader

ApplicatlOlI,d'lhe \-"llt""('" (0 f, III eqn IAIII gin', [he' rc,ult

',':B 1,\. \,,,)\ I dS,
.. R I If, \ )

ilie" i'I;«1' + 1;1)
.'

,! '"I I'fI'(/, 1;1
(A22)

Here /" detined 111 eql1 [\2'11, ,ll1d ",' used thl' prupert\ \/ II Yet annther applicatIOn of A to eqn (A20) yields

\ I', u 1\/ ,I ,

I

~ ((/ i ' til 2u' i ' -/
I;) 1/ 2a' ) 35 8)1[{-/ +-

~r III n- ~ / iJ--r)

"
1-1)4 t

"'~t u I

I
1~1I1 Xlu ,l) II f; i4X 280 \ ]

,
II /'1 1,1 I) III iI 1/ I) p' 1\ ' +(17)-i' Ii

(.1-, u , 'I

"
, ~le If II , I I~X :+:8:' 3X/' + 81'

I I I
_~ II , 21" 11 1)4

I Jc (/ 1~4 ~ljh,l ;911/' X61 + 16t4
,

I
I "

'I' li'll I)'

II
4,\ ~h/ ~I (/ I ~h T 4r _~()f

, 1
(/~ (/:')1 :

+ I II ,I 1

Ii 'II II ,,"II /1 ;:,

('I 91 2r" ,I I h (,t 8t'
I I

I' [I II "i! 1)

[

htl "'I d
"

I' ~~: I il <II" ~~;~).
/' /11 , I .', ,I /1' L I' [II II, I II I)



186 V. I. Fabrikant

_-_l-J z [_ 3~~ I05(a' -p't)

p4(1-t) p"[t(l-t)]" t(l-I)' (1-1)4

315z'tJ[ (t l
2' ('t l

:(a
2-li)12)J}+ __ tan I ---)-tan I .

(I-I)' (I-t)'2 . a(l-t)"
(A23)

It should be noted that

pell~ ~rell/J

Aln[R(M,N)+z] = R(M,N)[R(M,N)+z]'

, (pe'~-re",)2[2R(M,N)+zl
A-In[R(M,N)+z] =. ,

R'(M, N)[R(M, N)+zj'

8R'(M N)+9zR(M,N)+3z2
A ' ln[R(M,N)+z] = (pe"'-re'"))'- '

R 5 (M, N)[R(M,N)+z]J
(A24)

Though I can not compute L, (M, No), as it IS defined In eqn (32), I can compute an its derivatives. The simplest
to compute is (Fabrikant, 1989)

ef zB,(N, No) j'> ,', I I ([(p~_a2)(r2_a2)lL2) zrdrdift
J, = J dS, = J ··---tan

s R 3 (M,N) II a R(N, No) aR(N, No) RJ(M,N)

2IT
= tan

R(M. No)

The next integral to compute is

I ([(piJ-a')(I;. a')]' ")
--_._-~--

. aR(M,:V II ) .. '

'j' p e'" - r e"
J, = !--,--B,(N,No)dSN •

.\ R (M,N)

(A25)

(A26)

The integral can be expressed through J , as follows

.I, = J: AJ, dz,

and it can be computed in the same way as It is done by Fabrikant (1989, Appendix A4.3), with the result

iOn IX I I ([(piJ - a')(r' -a')] I ') Pe'¢ - r e'"J, = ----tan --.----.-- ·----rdrdift
- 0" R(N. No) aR(N, No) R 3 (M, N)

(A27)

Here we introduced the notation

-.---....---- -----0

Ro = R(M,No) = vp:+P~-2pPllCOS(<jJ-1>O)+Z2, s = Jppoei(¢ ¢"l_a',

(A29)

Integration of eqn (A28) with respect to z yields

i'"IX I ,([(p~-a')(r'-a')l"\ (pe"'-re''')rdrdi/J---tan·
o "R(N, No) aR(N, No) ) R(M, N)[R(M, N) + z]

2IT { ( j )= q R" tan I R
II

-ztan I (·•."piJ~a')' + I '_a2[ II-Ctan- I(a(l-DIi2)
,a vPo v.. (l~_a2)1!2

z ( ( if) (if))J}-' tan - , - tan - I -- .

5 (a 2 -ID" a
(A30)

Here the following indefinite integrals were used
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(a'
: tan I (A31)

r-=- tan I (L)' d~ = R" tan I ( /)_JR II R" \R,:, '"

and the identi ties

:tan I al I
IU

«"1 = I;(R~ +;'). (AD)

( was defined in expression 1151. ApplIcation of the A-operator to cqn I A30) results II1

27;: (R~ -r-::~ / i' 1-
tan '( '1, ) _. =~ tan

q I qR" \R,,' 'I

'l~ ('~ 1'" e
J

',,·)(,a'} - - ,._, tan
I,</ I:,' (a

a')lr' a)l'~\)rd:-dif

aRiS.,\,) /RU".N,,)

tl )1

a

tan

l,"f i a\1 --:1 :

l j +

fue
if Itan (iI; -a'

la (u- 1;1' )i
I', \1 - ~I' I' j)i-

The following identities were used here

(A34)

la

.\ Ian

,\ tan I

all (I

) = - Poll

)=
flflil c

II

: I") R,I\ tan I I ~
\R 11 ; R l , -t-.. /-

Applying yet another A-opcrator to eqn IA'41. the result h

I'> r' (I' e" - I' e"j " [XR ('v!. N) +9~R(J~.\I t'~

." .d R (,\1 ..\ llR(M,,\ I +~J

I
I' e

I !

I tan
'1',,1'- a") rdrdif

aR(\, N,,) . R(/I/, N,,)

(A3S)

2rr r3R~ +6::- R~,

q '1--(7~R"
tan

'/ X~

( . )-- _ tan
R, q

a( I :)
tan

U I

1(/"
\

e'

3fJ~ e~l'; l[ tan I-tan (I I+
-' ., u ls Ii )'

-

G
p., c .r, ur I i! I I', ei'I;, ue l : ~Ia_c" (~

('I'"-
\
I
- T

;;- I' e -I; I'
I p,\- ,q I'

Po e:~')

)(a 1;1 [lle'q II c l ', 1/'" I.)
__ 1 e,,"]l-t «I' -\ t

.\-- R, I ( R,,<) <)/' - J

Differentiation wah respect to ~ of eqn (A~) I leads to the Inte~ral

(A36)
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(} If zB, (N, No) dS I'n I" (I 3Z') t _I(~v'~'P5--c-::-ca='J'-:cr:-:' a') r dr dt/J
8z sR 3(M,N) N=Jo Ja R 3(M,N)-R 5(M,N) an aR(N,No) R(N,No)

{ - ( .) . [I' -' 7' J}= 2n _ ~tan-I L + J _,~P_ _ ""-- .
R~ Ro z(R~+}') li-/~ R6

(A37)

Application of the operator A to eqn (A25) yields

f"foo 3z(p e'¢ - rei,) _ ( !p~ - a' / r' - a2) r dr dljJ----''----------' tan ,y v ---~

o a R 5 (M,N) aR(N,No) R(N.No)

{
q - I (i ) i [Pe'¢ q J}

= 2n R~ tan Ro - R~ +}' Ii _/~ - R~ .

Yet another application of A-operator to eqn (A28) yields

AI, = _I" r'" 3(pe'¢-re'·)' tan-' (~p=-;;') rdrdt/J
Jo J, R 5 (M. N) aR(N, No) R(N, No)

2n{Z(3R~-Z') ,(i) 2 _1(p~-a')I") zi [q
=- tan - --tan +-- -

q qR~ Ro q a R6 +}' R6

qp'e
2i
¢ J (P6- a')I!'(2 poe

i¢,)[ -I( s )- - -+-- tan
(Ii -I; )(p' -1iJ s q S' (a' -1iJ 1/2

The next integral to compute is AI" and from (A9)

AIf B,(N, No) dS = 2~ ,¢(' _ ') 1/' {_I_ [1- a(a' -1iJ Ii'J
R(M N) N n Pe Po a I - ,,_
s' a3 -I a'-I;t

Ii.' [ -i ( 1
1/2) -I (1112(a

2 -/D'/')J}+--- tan --~ - tan .
(I-I)" (1_1)11' a(l-I)II'

Applying the A-operator to (A40), results in

Integration with respect to z of both sides of eqn (A41) yields

a _(a' - p2 I) II')J_ tan I
(a'_p'I)3i2 (Ii-a')II"

Application of yet another A to (A42) gives

I' J , ,,,{ (li-a')II' [ a'+2p'l
= 2n- p' e-'¢ (p' -a') l~

a 0 (a 2 -lTl)(a'-p'l) li(a'-p'l)

a' +P'I 2(a' _I') J 3 (a' -P'f'I/')}+ + I _ tan-I 'J.

lil(li-1iJ (Ii-IiJ(a'-/~1) (a'_p'1)5/2 {Ii-a2)1!2

The following identity was used here

-i (a'_p'l)i") pe'¢a'(li-a')'/' [- a'-p2 lJAtan = - 1+---.
(li-a')" li(a'-p'I)'!'(a'-lTl) li-/~

(A38)

(A39)

(A40)

(A41)

(A42)

(A43)

(A44)



External clrcul"l ,Ltd

APPENDIX H

189

For the readers' convemence. present here some reguLJr Integrals which are not explicitly present in the
tables

I. ,
d,

(h I I

tan I (Bl)

a

a')'
tan

h, (/
I ) -~~-=~-

2/1'(h' x')(h'-a')
(B2)

J
dl (Y., I" fi ).tan, I' II' rl 1, 1'- \ \, "'F!

(B3)

TI

1'- 41'

21' II" :X'I
tan I ()'~~ \

IX, P-

I' ,,-YL -+- 1_,,_]
(.1'-":1'1 p',x',p"

(B4)

(B5)

f dx
------ ._,._----',. ----------

~ ~. "", ,
(x' -1',) '(I' -T) 1(1' 1'1

tan 1') _
)' I, I x' _1= 1")

(B6)

j' dx

(x' .'1")' '(x' 2":1 (I'

(":1, \

\Y, fl

I'
I

j

[

I" 4:'-

1'::") ,i lj! '1 I

IB71

, dx

j (x'~~;j~; (y',- x')

+

, tan
111' 1')'

tan
2x'(I'-x"I' .

~_~ \ }I

/) 'l

4

'\,_\ - fl-

2x'(I' X'I(p x: I' 1') "' \-

]()

1
2

)(.,' -1")

4 20 8

I present below some indefimte Illtegrah lI1\ol'lllg I, and I w11iCh were lIscd In this paper

(p,~5X2)2] (B9)

Here c does not depend on :

. I lI! r sin
c ( :' !

, I t < '((I /")
-- Sill

\,1 I +- c' (I"
\

(
'(1',1 + c'.(a', <)\)].
I., I +c'(a' -I,).

(BIO)

I'\- " 11 -- Ii )+ (I, I
\ -

. (I, I -I "

( (II
\/2/ (I

Sill I (' '" 0: P;!)" ].,I, -1"/
(BII)
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IZ2 tan I(eva'-If)dz=~tan I(ev -Ii)

- '{ ~--'lll a'p'c' J [p2 I+c'(a'-p')
- k vp~-1;2 + 11(1+a'c~ + 2- e'(l+a'e')

a'p'e']. ('aj [1+e'(a'-p')J3!'. _ (aJI+e'(a'-p'))}
..... --.. Sin I - + Sin I ,

J +a'(" I,; c'(1+c'a')l!2 I,JI+e'(a'-/D

j" (v1va'-d) Zl I (/.vlv a'-. II) av:J.-.t{ /----'--�2 (� 1 p2 1)z" tan - I • dz = - tan ~----- - --_- v p - I - + -
a~J-t 3 a, , -{ 3~t 2 II

(
, , _ a,l')Sl·n··1 ('!.)+ (a'-p21)"'(l-I)sl'n- 1 (~)},

+ a- ""'cl'- I, al J/~-p'l

r
d, ; ('.·.U\) ,/r;~~' Ja'-p' -I (J/~-a2)

--~ = --Sin + --- - tan ,
• va' - d I, . a a Ja' - p'

j' z'dz _- (Ii (1')1' /ivli-a' P'. _I (a)-- + ----- + -Sin -J a' -Ii 3a 2a 2 I, '

(BI2)

(B13)

(BI4)

(BI5)

(BI6)

I
'va' -I; 1 .
~~-dz = - -. Sin

. 1- c'/i (',
iil' .",'--, l-c 4 a'p' _ (JI~-a')

I -+-. (1 ....../ I~ - (r - ", ," tan 1 2 2 '
(/) c~l-cp' a~ (BI7)

a(l; a')" (b'-a')(b4 -a' p') 2 2' _I (/IJb2_p2)
+ + -- ~SIn .

W b' pJb2 -1i

Here band c are the quantitIes which do not depend on z.

j'Z'~ .-~,~,(II P'(1-I)) 1('1" , a")' -I (-Ia,)
, I' dz = v P' -Ii 1( - --i" + I ") + a' -r- Sin

a - It .. I,' \ ~ .

, " ' , '2) ( ~)II; (1') ";--, (I-I)(a -p I . _I va -p I+ --...------ + v (I' - p' t Sin ,
3il aI' J1i _p2 I

'z'(I~+(")(ll-a')dz '(,'-3a' 2a2
)[ -,--, -I (a)J= ..-- - ~- /1 -a -acos -L,(I~-(")'(l~-P')52(1~-I;) (C4p4 ("p' v' 12

(BI8)

(BI9)

a [I-COS
e'p4 2a

- Va' -e' tan

,
-, , tan
2., lr -c-

vI:.: -. a'J [3a
1

--e' 4(a' -e')J[ , ,---_. + --- ~
21; c' p2_ e2 v,,-U

I (.".',-c;-----;-\IJ ..... [2p: _a' + c' - 2(p' + e')(p' -a')(~
,'I' C / _ p'

+-~._.. )'] I [/':-a'- /-~i~p'tan I (~)J
p'-.c: p4(p'_C' )'.' - v Ja'-p'

f a'dZ I' I, dz----". = =

n(a'-/i)3' .(!~_p')"
. cos

,(vl~-a') JI~-a2Jtan - ...Y.....:c.-_
Via' - p' 2(l~ _ p') ,

f a\) ~a2+p' (J/ 2 -a2) JI'-a2
I _ + _.. tan-I ~ _ 2

(1,/ 2p'Ja'-p2 Va'-p' 2m- p2)'

(B20)

(B21)
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a(4a'+p') I (.'.'\- -- - - cos \ -- I
2p' /;

(B22)

all_la-~ P

"r L :1"

p.]
+ -2. cos

(x
(B23)

f dz I{a I

Ja2 -/i(lJ-X') = -~ ;,COS
(a ') y' a' -I;'{ ..., + ~,--,-tan
\1,( p- -x'

I ~ II'

), tF

a· (a' __ p')' ,
)+--,- -- tan

p'f z'dz I {'--,'(' a" /]- --I' - a- 1- + a -~(lJ-P') - a V , 21;) (2

fJa2-1;(a'+!iO a ,
dz = ----.. tan

(l~-li)(a'--lit)' (a' -p'r)" \,

"IP'
a'I~==tan-1(~)}

y::')"a=_ry.'2 ",/a 2 _:x 2 '

I (,/~)}
,\!/a2 _ p2 '

(B24)

(B25)

(B26)

All the integrals involving II and I, were computed by usmg the ,;ubstitutIons

{I'
: = -"----

I;y p' -I;
II

or
,I -a~IJ

I,
p'

dz = or
I

:/
(B27)


